While the temperature maximum appears to be more delayed in the model, also the two years of observations show different timings, with an earlier arrival of ASW in 2011 (December/January) then in 2010 (February/March). Furthermore, the model and the observations INCB018424 chemical structure show a consistent time lag of about two months between the arrival of ASW at M1 and M3, likely being caused by the blocking effect of the Jutulstraumen ice tongue that leads to more accumulation of surface water on the eastern side of the FIS (Zhou et al., 2014). The correspondence between the simulations and the sub-ice shelf observations suggests that the model captures the main dynamics of the ice shelf/ocean interaction
at the FIS, and we now analyze the characteristics and variability of basal melting in the ANN-100 experiment. A map of temporally-averaged basal melting and freezing rates from the last year of the ANN-100 experiment is shown in Fig. 7(a). Ribociclib Black contours indicate
ice draft, with the northernmost border corresponding to the 140 m contour in Fig. 2(a). The area average basal melt rate is about 0.4 m year−1, accounting for a net mass loss of about 14 Gt year−1. Note that for calculating average melt rates in this paper, we omit the ice front region that is attributed to the topographic smoothing described in Section 3.2, and only include ice thicker than 140 m (thick magenta line in Fig. 2(a)). Areas of sloping ice shallower than 140 m, where the simulations show unrealistically high rates of melting and freezing over an artificially enlarged area, account for about 9% of the total ice shelf area in the model, contributing Idoxuridine an additional 0.1 m year−1 to the average basal mass loss in the ANN-100 experiment. While
these model artifacts add considerable uncertainty to the absolute melting estimate in our study, they are of minor importance for the conclusion that our simulations provide a substantially lower estimate than earlier coarse resolution models, which suggested melt rates of a few meters per year for the FIS (Smedsrud et al., 2006 and Timmermann et al., 2012). Instead, our results are similar to recent remote sensing based estimates of 0.57 m year−1 (Rignot et al., 2013) and consistent with earlier observational studies that suggested generally low basal mass loss at the FIS (Pritchard et al., 2012 and Price et al., 2008). The spatial pattern in Fig. 7(a) shows stronger melting of deeper ice draft, also seen in previous simulations of Smedsrud et al. (2006), but with lower overall magnitudes in our study. In particular along the deep keel of Jutulstraumen, high melt rates of several meters per year occur, while the large uncolored areas in Fig. 7(a) indicate nearly zero melting over most of the ice shelf between 200 m and 300 m depth.