When the survival curves of the three groups of infected mice were compared, the Kaplan Meier statistic was not significant (P = 0.105). In experiment 5 (diet comparison), levels of gross pathology in infected mice were similar check details in all groups of mice (Figure 8C); no control mice exhibited gross pathology. When gross pathology scores of the six groups of mice were analyzed using two-way ANOVA on LY294002 mw ranked data, differences among the groups due to infection status were significant (Pcontrols vs infected = 6.11 × 10-24), but there was no statistically significant difference due to diet (P = 0.956), nor was there a statistically significant
interaction between infection status and diet (P = 0.956). Histopathology scores were elevated both in infected mice kept on the ~6% fat diet throughout and in infected mice experiencing the transition from the ~12% fat diet to the ~6% fat diet (Figure
8D). When histopathology scores of the six groups of mice were analyzed using two-way ANOVA on ranked data, differences among the groups due to infection status were significant (Pcontrols vs infected = 2.33 × 10-6), but there was no statistically significant difference due to diet (P = 0.553). Nor was there a statistically significant interaction between infection status and diet (P = 0.611). Humoral immune responses to C. jejuni CUDC-907 cost infection of mice on the different dietary regimes in experiment 5 (diet comparison) are shown in Figure 9. When two-way ANOVA was conducted on these data, the effect of infection status (infected vs controls) was significant for plasma levels of anti-C. jejuni IgG2b, IgG2c, IgG3, and IgA (P = 1.68 × 10-10, 8.93 × 10-7, 8.57 × 10-7, and 5.34 × 10-6, respectively) but not for IgG1 (P = 0.109). There was no statistically significant effect of diet on levels of anti-C. jejuni IgG2b, IgG2c, IgG3, or IgG1 (P = 0.114, 0.203, 0.204, and 0.477, respectively). There was no statistically significant
interaction between diet and infection status for anti-C. jejuni IgG2b, IgG2c, IgG3, or IgG1 (P = 0.202, 0.075, 0.076, and 0.620, respectively). However, for plasma anti-C. jejuni IgA, there was a statistically new significant effect of diet (P = 0.012) as well as a significant interaction between diet and infection status (P = 0.035). Plasma IgA levels were significantly different in mice on the ~6% fat diet compared to mice on the ~12% fat diet (Pcorrected = 0.019) and in mice on the ~6% fat diet compared to mice experiencing the transition between the two diets at the time of inoculation (Pcorrected = 0.032). Plasma IgA levels in mice experiencing the dietary transition were not significantly different from those of mice on ~12% fat diet (P = 0.695). Figure 9 Plasma anti- C. jejuni antibody levels in mice on different dietary regimes (experiment 5).