Time trial completion improved by 1.3% for caffeine intake at 6 mg/kg. The 9 mg/kg dose did not result in additional increases in performance. The average of the 6 and 9 mg/kg caffeine selleck chemicals llc treatments was 1.2% faster as compared to placebo [32]. Anderson and colleagues [75] tested these same doses of caffeine in competitively trained oarswomen, who also performed
a 2,000-m row. In women, the higher dose of 9 mg/kg of caffeine resulted in a significant improvement in time by 1.3%, with performance enhancement most evident in the first 500 m of the row [75]. Team sport performance, such as soccer or field hockey, involves a period of prolonged duration buy ABT-737 with intermittent bouts of high-intensity playing time. As such, Stuart et al. [33] examined the effects of a moderate dose of caffeine (of 6 mg/kg) in well-trained amateur union rugby players. Subjects participated in circuits that were designed to simulate the actions of a rugby player, which
included sprinting and ball passing, and each activity took an average 3-14 seconds to complete. In total, the circuits were designed to represent the time it takes to complete two halves of a game, with a 10 min rest period. Results demonstrated a 10% improvement in ball-passing accuracy [33]. An improvement in ball passing accuracy is applicable to a real-life setting as it is necessary to pass the ball both rapidly and accurately under high-pressure conditions [33]. In addition, throughout the duration of the protocol, those subjects on the caffeine condition successfully passed the ball 90% of the time as compared to 83% for placebo [33]. This study [33] was the first to show an improvement in a team sport skill-related task as it relates to caffeine supplementation. FER Results of this study [33] also indicated that for the caffeine condition subjects were able to PI3K Inhibitor Library maintain sprint times at the end of the circuit, relative to the beginning of the protocol. Schneiker et al. [34] also examined the effects of caffeine supplementation on repeated
sprint ability common to sports such as soccer and field hockey. Ten male recreationally competitive team sport athletes took part in an intermittent-sprint test lasting approximately 80 minutes in duration. Results of the study indicated a caffeine dose of 6 mg/kg was successful in inducing more total sprint work, as compared to placebo. Specifically, total sprint work was 8.5% greater in the first half and 7.6% greater in the second respectively [34]. Based on the research presented [29, 30, 33, 34, 74], it is apparent that moderate caffeine supplementation in the range of 4-6 mg/kg can be advantageous to either short term or intermittent/prolonged duration high-intensity performance, but only in trained athletes.