The rotational invariance properties of both the transmit and receive arrays are investigated in [9], then the DOD and DOA are determined through two independent 1D ESPRITs. However, an additional pairing operation is required. In [10], the relationship between two 1D ESPRIT is investigated. In [11], the real-valued ESPRIT (unitary ESPRIT) is proposed to estimate DOD and DOA. It has lower computational complexity and slightly better angle estimation performance compared with ESPRIT [9,10]. A multi-singular value decomposition (multi-SVD) method is presented for DOD and DOA estimation in [12]. It provides better angle estimation than the traditional eigenvalue decomposition (EVD)/SVD method. The above schemes can only be used for angle estimation in the presence of spatial Gaussian white noise.
In [13], an ESPRIT-based method for bistatic MIMO radar DOD and DOA estimation is proposed, which can eliminate spatial colored noise. However, it is only effective for three transmit antennas configuration. By dividing the transmit array into two subarrays, a combined ESPRIT and SVD of the cross-correlation matrix method (denoted as Chen’s method) is presented in [14], which is effective for MIMO radar with three or more transmit antennas to eliminate the influence of spatial colored noise.However, in the subspace methods [13,14], the received signals are stacked into a special structure matrix, ignoring the multidimensional structure inherent in the received signals after matched filters.
In this paper, a tensor-based frame is considered for the received signals, which exploits the multidimensional inherent structure and a novel tensor-based subspace for bistatic MIMO radar in the presence of spatial colored noise is proposed. Firstly, utilizing the multidimensional structure inherent in the received signals after matched filters, the received signals can be packed into a third-order measurement tensor. Then, the measurement tensor is divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise by exploiting the orthogonal characteristic of matched filters. Finally, the higher-order singular value decomposition (HOSVD) technique is employed to formulate the signal subspace. The DOD and DOA are estimated through the ESPRIT algorithm, which are paired automatically. Theoretical analysis and simulation results validate that the proposed method suppresses spatial colored noise more efficiently and provides better angle estimation performance than Chen’s method, the ESPRIT algorithm and the Cilengitide multi-SVD method, especially at the low signal-to-noise ratio (SNR) region.The rest of the paper is organized as follows. The tensor basics and signal model are presented in Section 2.