Nucleic Acids Res 1990,18(24):7389–7396 PubMedCrossRef 20 Hsu Y-

Nucleic Acids Res 1990,18(24):7389–7396.PubMedCrossRef 20. Hsu Y-H, Chung M-W, Li T-K: Distribution of gyrase and topoisomerase IV on bacterial nucleoid: implications for nucleoid organization. Nucleic Acids Res 2006,34(10):3128–3138.PubMedCrossRef ACY-738 ic50 21. Roostalu J, Joers A, Luidalepp H, Kaldalu N, Tenson T: Cell division in Escherichia coli cultures monitored at single cell resolution. BMC MK-8931 in vitro Microbiol 2008, 8:68.PubMedCrossRef 22. Kim J, Yoshimura SH, Hizume K, Ohniwa RL, Ishihama A, Takeyasu K: Fundamental structural units of the Escherichia coli nucleoid revealed by atomic force microscope. Nucl Acids Res 2004,32(6):1982–1992.PubMedCrossRef 23. Yang S, Lopez CR, Zechiedrich EL: Quorum sensing and multidrug transporters in

Escherichia coli. Proc Natl Acad Sci USA 2006,103(7):2386–2391.PubMedCrossRef 24. Krasin F, Hutchinson F: Repair of DNA double-strand breaks in Escherichia coli , which requires recA function and the presence of a duplicate genome. J Mol Biol 1977,116(1):81–98.PubMedCrossRef 25. Lewin C, Howard B, Ratcliffe N, Smith J: 4-Quinolones and the SOS response. J Med Microbiol 1989,29(2):139–144.PubMedCrossRef 26. Howard BM, Pinney RJ, Smith JT: Function of the SOS process in repair of DNA damage induced by modern 4-quinolones. J Pharmacol 1993,45(7):658–662. 4SC-202 research buy 27. Piddock

LJV, Walters RN: Bactericidal activities of five quinolones for Escherichia coli strains with mutations in genes encoding the SOS response or cell division. Antimicrob Agents Chemother 1992,36(4):819–825.PubMed 28. Newmark KG, O’Reilly EK, Pohhaus JR, Kreuzer KN: Genetic analysis of the requirements for SOS induction by nalidixic acid in Escherichia coli. Gene 2005, 356:69–76.PubMedCrossRef 29. Pitcher RS, Brissett NC, Doherty AJ: Nonhomologous end-joining in bacteria: a microbial perspective. Annu Rev Microbiol 2007, 61:259–282.PubMedCrossRef 30. Stephanou NC, Gao F, Bongiorno P, Ehrt S, Schnappinger

D, Shuman S, Glickman MS: Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks. J Bacteriol 2007,189(14):5237–5246.PubMedCrossRef BCKDHA 31. Minko IG, Zou Y, Lloyd RS: Incision of DNA-protein crosslinks by UrvABC nuclease suggests a potential repair pathway involving nucleotide excision repair. Proc Natl Acad Sci USA 2002,99(4):1905–1909.PubMedCrossRef 32. Nakano T, Morishita S, Katafuchi A, Matsubara M, Horikawa Y, Terato H, Salem AMH, Izumi S, Pack SP, Makino K, Ide H: Nucleotide excision repair and homologous recombination systems commit differentially to the repair of DNA-protein crosslinks. Mol Cell 2007,28(1):147–158.PubMedCrossRef 33. Chenia HF, Pillay B, Pillay D: Analysis of the mechanisms of fluoroquinolone resistance in urinary tract pathogens. J Antimicrob Chemother 2006,58(6):1274–1278.PubMedCrossRef Authors’ contributions MT and RB performed technical experiments and statistical analysis. JG participated in image acquisition and image analysis.

Comments are closed.