In conclusion, these data indicate that GAT-1 and GAT-3 represent

In conclusion, these data indicate that GAT-1 and GAT-3 represent different target sites through which GABA reuptake may subserve complementary

regulation of GABAergic transmission in the rat GP. “
“Several factors modulate the first step of odour detection in the rat olfactory mucosa (OM). Among others, vasoactive peptides such as endothelin might play multifaceted roles in the different OM cells. Like their counterparts in the central nervous system, the olfactory sensory neurons are encompassed by different glial-like non-neuronal OM cells; sustentacular cells (SCs) surround their cell bodies, whereas olfactory ensheathing cells (OECs) wrap their axons. Whereas IWR-1 concentration SCs maintain both the structural Cytoskeletal Signaling inhibitor and ionic integrity of the OM, OECs assure protection, local blood flow control and guiding of olfactory sensory neuron axons toward the olfactory bulb. We previously showed

that these non-neuronal OM cells are particularly responsive to endothelin in vitro. Here, we confirmed that the endothelin system is strongly expressed in the OM using in situ hybridization. We then further explored the effects of endothelin on SCs and OECs using electrophysiological recordings and calcium imaging approaches on both in vitro and ex vivo OM preparations. Endothelin induced both robust calcium signals and gap junction uncoupling in both types of cells. This latter effect was mimicked by carbenoxolone, a known gap junction uncoupling agent. However, although endothelin is known for its antiapoptotic effect in the OM, the uncoupling of gap junctions by carbenoxolone was not sufficient to limit the cellular death induced by serum deprivation in OM primary culture. The functional consequence of the endothelin 1-induced reduction of the gap junctional communication Acyl CoA dehydrogenase between OM non-neuronal cells thus remains to be elucidated. “
“It is unclear whether top-down

processing in the auditory cortex (AC) interferes with its bottom-up analysis of sound. Recent studies indicated non-acoustic modulations of AC responses, and that attention changes a neuron’s spectrotemporal tuning. As a result, the AC would seem ill-suited to represent a stable acoustic environment, which is deemed crucial for auditory perception. To assess whether top-down signals influence acoustic tuning in tasks without directed attention, we compared monkey single-unit AC responses to dynamic spectrotemporal sounds under different behavioral conditions. Recordings were mostly made from neurons located in primary fields (primary AC and area R of the AC) that were well tuned to pure tones, with short onset latencies. We demonstrated that responses in the AC were substantially modulated during an auditory detection task and that these modulations were systematically related to top-down processes.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>