Implications for medicine Taken together, I have presented additi

Implications for medicine Taken together, I have presented additional recent evidence for the potential occurrence of Metabolism inhibitor oncoprotein metastasis that may be a major mechanism of premalignancy besides and/or preceding epigenetic and genetic changes in morphologically normal cells (Fig. 1b and Fig. 2a). For a complete picture it should be added that the process of oncoprotein metastasis may also occur in malignant cells

and thereby contribute to their further de-differentiation. Figure 2 Schematic overview of possible sequelae of oncoprotein metastasis (OPM) and a potential OPM EPZ015666 research buy treatment with distinct antineoplastic peptides. a) Morphological sequelae of OPM and its (epi)genetic correlates ultimately making a seemingly normal cell adopt a malignant SB525334 clinical trial appearance (“”morphological switch”"). b) Molecular sequelae of OPM resulting in a tumor suppressor protein (TSP) loss of function (after a reactive or compensatory upsurge in response to the initial oncoprotein challenge) already at an early stage of the oncogenic process when the affected cells have still a (deceivingly) normal appearance (“”functional switch”"). c) Antagonism of OPM by treatment (Rx) with TSP-like peptides featuring a binary structure that combines an antiproliferative (AP) segment with a nuclear localization sequence (NLS) the latter of which

also mediates cellular penetration/internalization and thus ensures that these antineoplastic peptides are able to enter and influence both (premalignant) normal-appearing

cells and cancer cells. For a more complete picture, it should be added that non-peptide mimetics of these peptides are also conceivable (albeit, for specific reasons to be discussed elsewhere, not preferred) therapeutics. Moreover, chemopreventive (peptide and non-peptide) agents are likely to achieve their beneficial effects by a similarly global internalization into non-malignant and premalignant cells. Therefore, future studies Vildagliptin should examine whether (morphologically) normal cells from cancer patients, in particular those adjacent to primary tumors and their metastases, i.e. pertaining to their (inflammatory) microenvironment [16], contain oncoprotein-tumor suppressor protein heterodimers (Fig. 1b) or, respectively, their correlates, e.g. posttranslational tumor suppressor protein modifications such as RB (hyper)phosphorylations [17]. For investigative purposes, this protein-based status of cancer patient-derived normal cells should be additionally compared with alike parameters of normal cells obtained from non-cancer patients and also from healthy individuals. This proposed analysis, if validated, should fundamentally transform the diagnosis, prognosis and treatment of malignant disease.

Comments are closed.