The tree was generated from multiple sequence alignment of protei

The tree was generated from multiple sequence alignment of protein sequences MRT67307 mw with higher than 55% identity to either C. crescentus CzrA or NczA, and the distances were calculated using CLUSTALX [40]. The branches were color-coded as follows: blue, Alphaproteobacteria; red, Gammaproteobacteria; orange, Betaproteobacteria; green, Chlamidiales. Some of the most prevalent genera present in each branch of the tree are indicated. The two separate clusters corresponding to either C. crescentus orthologs are indicated as follows: A, NczA orthologous group; B, CzrA orthologous group. We

observed no correlation between the two phylogenetic groups A and B and the response to different types of metals of the RND proteins already characterized. C. crescentus NczA, which is important

for nickel and cobalt resistance, clustered in group A with C. metallidurans CH34 CzcA, which is involved in Cd2+/Zn2+/Co2+ resistance [26–28]. Similarly, C. crescentus CzrA, important for Cd2+/Zn2+ resistance, clustered in group B with CnrA from C. metallidurans CH34, which confers resistance to Ni2+ and Co2+, and with NccA from A. xylosoxidans 31A which confers Ni2+/Co2+/Cd2+ resistance [31, 41]. It must be noticed, however, that we observed two separate branches within group A (Figure 5), which include different genera of the gamma-Proteobacteria and only one contains protein sequences from beta-Proteobacteria (such as C. metallidurans CzcA). We cannot exclude the possibility that these two sub-groups could show some correlation with metal specificity, but more experimental work with representative proteins from each group is necessary to clarify that. A previous MM-102 research buy search for domain signatures for the HME {Selleck Anti-cancer Compound Library|Selleck Anticancer Compound Library|Selleck Anti-cancer Compound Library|Selleck Anticancer Compound Library|Selleckchem Anti-cancer Compound Library|Selleckchem Anticancer Compound Library|Selleckchem Anti-cancer Compound Library|Selleckchem Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|buy Anti-cancer Compound Library|Anti-cancer Compound Library ic50|Anti-cancer Compound Library price|Anti-cancer Compound Library cost|Anti-cancer Compound Library solubility dmso|Anti-cancer Compound Library purchase|Anti-cancer Compound Library manufacturer|Anti-cancer Compound Library research buy|Anti-cancer Compound Library order|Anti-cancer Compound Library mouse|Anti-cancer Compound Library chemical structure|Anti-cancer Compound Library mw|Anti-cancer Compound Library molecular weight|Anti-cancer Compound Library datasheet|Anti-cancer Compound Library supplier|Anti-cancer Compound Library in vitro|Anti-cancer Compound Library cell line|Anti-cancer Compound Library concentration|Anti-cancer Compound Library nmr|Anti-cancer Compound Library in vivo|Anti-cancer Compound Library clinical trial|Anti-cancer Compound Library cell assay|Anti-cancer Compound Library screening|Anti-cancer Compound Library high throughput|buy Anticancer Compound Library|Anticancer Compound Library ic50|Anticancer Compound Library price|Anticancer Compound Library cost|Anticancer Compound Library solubility dmso|Anticancer Compound Library purchase|Anticancer Compound Library manufacturer|Anticancer Compound Library research buy|Anticancer Compound Library order|Anticancer Compound Library chemical structure|Anticancer Compound Library datasheet|Anticancer Compound Library supplier|Anticancer Compound Library in vitro|Anticancer Compound Library cell line|Anticancer Compound Library concentration|Anticancer Compound Library clinical trial|Anticancer Compound Library cell assay|Anticancer Compound Library screening|Anticancer Compound Library high throughput|Anti-cancer Compound high throughput screening| subfamilies identified the consensus sequence DFGX3DGAX3VEN as characteristic

of HME1 and HME2 [14]. We used our alignment of C. crescentus CzrA and NczA orthologs in order to identify other possible motif signatures for each group (Figure 6). The analysis of the amino acid conservation profile within the CzrA and Racecadotril NczA orthologous groups showed five main different motif signatures (MI-MV) (Figure 6A-B). In CzrA these motifs are: MI – XLXPXX, MII-NGF, MIII -not conserved, MIV- not conserved and MV- CF. In NczA these motifs are: MI – GY/FSPLE, MII – YGL, MIII- PGQ, MIV – YW and MV- XL. A large loop contains the signature motif GXPGXQXDGX3TX2GX2L, whereas the small loop has motif AX4G. The complete analysis of the amino acid conservation for CzrA and NczA is shown in Additional file 2: Figure S1. Figure 6 Motif signatures of the CzrA and NczA orthologous groups and localization on the CzrA structural model. Main differences in the sequence conservation profile between the CzrA (A) and NczA (B) orthologous groups are shown. The boxes show the residues important for the respective motifs and the asterisks show differences in the degree of the amino acid conservation between the two orthologous groups.

Comments are closed.