Studying hormonal effects on systemic immune cells may selleck inhibitor not be an appropriate system for defining the responses of FRT mucosal immune cells. Immune cells in the FRT have a different phenotype from those in systemic circulation.79 For example, uterine NK cells
express higher levels of specific markers and have greater anti-HIV activity than blood NK cells.80 Neutrophils and macrophages also possess distinct characteristics from their counterparts in the blood. FRT neutrophils have lower levels of lactoferrin and matrix metaloproteinase-9, but appear to be primed for a more rapid induction of innate immune defense.81 Typically, levels of antimicrobials in mucosal fluids are measured by ELISA. Nutlin-3a molecular weight In some cases, antimicrobial levels correlate with biologic activity while others do not.82 As discussed elsewhere, molecules in CVL may be quantitatively detected in an ELISA, but might not be biologically active, depending on the local environment in FRT secretions.83 Several factors determine biologic activity of antimicrobials in the FRT. Female reproductive tract secretions contain both proteases and protease inhibitors, many of which are hormonally regulated.69 For example, several proteases with trypsin-like
activity in cervical vaginal secretions are regulated throughout the menstrual cycle with levels highest at ovulation and during the secretory phase. Families of proteases include cathepsins, kallikreins, MMPs, CD26, and others, all of which are responsible anti-PD-1 antibody for activating and/or deactivating a variety of antimicrobial peptides.84 In addition, antimicrobials
such as SLPI and Elafin are themselves protease inhibitors and can therefore regulate the endogenous proteases. Factors such as pH, salt, serum, and presence of sperm can affect biologic activity of antimicrobials. For example, the activity of the antimicrobial LL-37 is altered in the presence of sperm. LL-37 is processed and activated by prostate-derived protease gastricsin in a pH-dependent manner.26 Many antimicrobials are sensitive to salt as well as the presence of serum. The activity and efficacy of defensins have been shown to change with pH and salt concentration.85 Daher et al.16 showed that the addition of serum inhibited neutralization of HSV by HNPs. More recently, Mackewicz et al.86 demonstrated that HIV inhibition by alpha defensins was almost completely abrogated by the presence of 10% fetal calf serum. Many antimicrobials present in mucosal fluids can act in synergy. Lactoferrin and lysozyme have been shown to be synergistic against Gram-negative bacteria.87 HBD2 and LL-37 also show synergistic effects.10 Singh et al.11 has shown that SLPI, lactoferrin, and lysozyme, in combination, have significantly higher antimicrobial activity than each of the molecules individually. Van Wetering et al.