, 2013; Nguyen et al , 2014), but have been designed for a partic

, 2013; Nguyen et al., 2014), but have been designed for a particular narrow focus. As a result they can be limited in their customizability and application to any particular experiment, particularly in regard to stimulation parameters and patterns. purchase Rapamycin The price of setting up one of these custom systems

may also be prohibitive, particularly if they use high-quality lasers for stimulation. There is consequently a need for a customizable, adaptive, and low-cost optoelectrophysiology system for in vivo experimentation. NEURORIGHTER PLATFORM We developed our optoelectrophysiology platform based on the existing hardware and software for electrical stimulation and electrophysiology, NeuroRighter. NeuroRighter is a low-cost open-source electrophysiology system written in C-sharp and intended for open and closed-loop neural interfacing in vivo and in vitro (Rolston et al., 2009b,c, 2010a). The software,

compatible with 32- and 64-bit Windows operating systems (Microsoft Corporation, Redmond, WA, USA) is free and the source code is available on a publicly accessible repository1. The hardware is also open-source, utilizing printed circuit boards (PCBs) and commercially available components, National Instruments (NI; National Instruments Corporation, Austin, TX, USA) data acquisition hardware (NI PCI-6259, PCI2-6259, PCI2-6353, and PCIe-6363 16-bit 1 M sample/sec) and driven with NI’s hardware control library, DAQmx. The design, construction, and performance of this electrophysiology platform – which meets or exceeds the performance of many commercial alternatives – is well documented (Rolston et al., 2009c; Newman et al., 2013). Recently, the NeuroRighter platform

has been enhanced for improved usage with closed-loop multichannel interfacing experiments for electrical stimulation (Newman et al., 2013), as well as in vitro optogenetic stimulation (Tchumatchenko et al., 2013). NeuroRighter is capable of recording single-unit (Figure ​Figure1A1A) and local field potential (LFP; Figure ​Figure1B1B) activity from multielectrode extracellular arrays, as well as delivering complex and customizable patterns of electrical stimulation through analog and digital outputs (Rolston et al., 2009c, 2010a; Newman et al., 2013). NeuroRighter is consequently well-positioned Brefeldin_A to incorporate customized optogenetic hardware and provide a low-cost solution to the problems facing optoelectrophysiology. FIGURE 1 NeuroRighter software and hardware for calibration, optical stimulation, and recording. NeuroRighter’s main application window enables real-time isolation of single units (A) and local field potentials (LFP; B) from multielectrode arrays, with … Here, we summarize the adaptations we have made to NeuroRighter to produce a system that enables real-time optogenetic neuromodulation and multielectrode electrophysiology in vivo in awake and behaving rodents using low-cost components.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>