The absorption was measured at 580 nm. MEST-1 (buy PF-3084014 closed square), MEST-2 (closed circle) and MEST-3 (closed triangle). * p < 0.05. Effect of monoclonal antibodies on fungal dimorphism In order to analyze the effect of mAbs MEST-1, -2 and -3 on yeast to mycelium transformation of P. brasiliensis, H. capsulatum and S. schenckii, at first, yeast forms were incubated with these mAbs for 48 h at 25°C, which is the optimum temperature for mycelia growth. As observed for CFU, mAbs MEST-1 and -3 were also able to inhibit in a dose-dependent manner the yeast to mycelia differentiation
of P. brasiliensis and H. capsulatum (Figure 5). In these experiments, 50 μg/ml of MEST-1 was able to inhibit the conversion of approximately 50% of HDAC inhibitor P. brasiliensis, and 55% of H. capsulatum from yeast to mycelia. Under the same condition, MEST-1 was not able to inhibit the conversion from yeast to mycelia in S. schenckii (Figures 5). Moreover, mAb MEST-3 was able to inhibit the conversion of yeast to mycelia of approximately 30% of P. brasiliensis, 55% for H. capsulatum and 50% for S. schenckii (Figure 5). Figure 5 Effect of monoclonal antibodies on yeast to mycelium transformation.
Yeast forms of P. brasiliensis, H. capsulatum and S. schenckii were incubated for one hour with different concentration of MEST-1, -2 and -3, and control IgG at 37°C. After that the yeast cultures were transferred to a 25°C incubator, and kept for 2 days. Three hundred yeasts were counted, and HSP990 solubility dmso the number of yeast showing hyphae growth was evaluated. In control experiment 100% of yeast showed hyphae formation; the results represent the percentage of those incubated with an irrelevant mAb, Galeterone considered as 100% of yeast to mycelium transformation. MEST-1 (closed square), MEST-2 (closed circle) and MEST-3 (closed
triangle). * p < 0.05. Furthermore, considering the relative proportion of yeast and mycelia forms as well the hyphal length, it was verified that mAb MEST-1 (Figure 6) and MEST-3 (not shown) were able to inhibit P. brasiliensis and H. capsulatum yeast to mycelia differentiation as early as 24 h after mAb incubation. Additionally, only MEST-3 (Figure 6) was able to inhibit S. schenckii yeast to mycelium differentiation. In contrast, no inhibition of yeast to mycelium differentiation was observed upon incubation of these fungal species with MEST-2 (Figure 5). Parallel experiments showed that after washing and replacing medium containing mAbs by antibody-free medium; the fungi tested were able to restore their growth and/or transformation, indicating that mAbs MEST-1, -2 and -3 present a fungistatic effect (data not shown). Figure 6 Effect of mAbs on mycelia formation. Yeasts were suspended in 1 ml of PGY or BHI medium. This suspension was added to a 24-well plate and supplemented with mAb MEST-1 or -3 (50 μg/ml), after one hour at 37°C cells were placed at 25°C.