Mol Cell Proteomics 2003, 2:1284–1296.PubMedCrossRef 26. Xiong Y, Chalmers MJ, Gao FP, Cross TA, Marshall AG: Identification of Mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry. J Proteome Res 2005, 4:855–861.PubMedCrossRef 27. Sander P, Rezwan M, Walker B, Rampini SK, Kroppenstedt RM, Ehlers S, Keller C, Keeble JR, Hagemeier M, Colston MJ, Springer B, Bottger EC: Lipoprotein processing is required for virulence of Mycobacterium tuberculosis . Mol Microbiol 2004, 52:1543–1552.PubMedCrossRef
28. Pennini ME, Pai RK, Schultz DC, Boom WH, Harding CV: Mycobacterium tuberculosis 19-kDa lipoprotein inhibits IFN-gamma-induced chromatin AZD9291 remodeling of MHC2TA by TLR2 and MAPK signaling. MLN2238 mouse J Immunol 2006, 176:4323–4330.PubMed 29. Young DB, Garbe TR: Lipoprotein antigens of Mycobacterium tuberculosis . Res Microbiol 1991, 142:55–65.PubMedCrossRef 30. Abebe F, Holm-Hansen C, Wiker HG, Bjune G: Progress in serodiagnosis of Mycobacterium tuberculosis infection. Scand J Immunol 2007, 66:176–191.PubMedCrossRef 31. Nikaido H: Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 2003, 67:593–656.PubMedCrossRef
32. Målen H, Berven FS, Fladmark KE, Wiker HG: Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics 2007, 7:1702–1718.PubMedCrossRef 33. De Souza GA, Målen H, Søfteland T, Saelensminde G, Prasad S, Jonassen I, Wiker HG: High accuracy mass spectrometry PLEK2 analysis as a tool to verify and improve gene annotation using Mycobacterium tuberculosis as an example. BMC Genomics 2008, 9:316.PubMedCrossRef 34. Jungblut
PR, Muller EC, Mattow J, Kaufmann SH: Proteomics reveals open reading frames in Mycobacterium tuberculosis H37Rv not predicted by genomics. Infect Immun 2001, 69:5905–5907.PubMedCrossRef 35. De Souza GA, Søfteland T, Koehler CJ, Thiede B, Wiker HG: Validating divergent ORF annotation of the Mycobacterium leprae genome through a full translation data set and peptide identification by tandem mass spectrometry. Proteomics 2009, 9:3233–3243.PubMedCrossRef 36. Harth G, Horwitz MA: An inhibitor of exported Mycobacterium tuberculosis glutamine mTOR signaling pathway synthetase selectively blocks the growth of pathogenic mycobacteria in axenic culture and in human monocytes: extracellular proteins as potential novel drug targets. J Exp Med 1999, 189:1425–1436.PubMedCrossRef 37. Harth G, Clemens DL, Horwitz MA: Glutamine synthetase of Mycobacterium tuberculosis : extracellular release and characterization of its enzymatic activity. Proc Natl Acad Sci USA 1994, 91:9342–9346.PubMedCrossRef 38. Tullius MV, Harth G, Horwitz MA: Glutamine synthetase GlnA1 is essential for growth of Mycobacterium tuberculosis in human THP-1 macrophages and guinea pigs. Infect Immun 2003, 71:3927–3936.