AcknowledgmentsThe authors thank the authority of BSMRAU Agricult

AcknowledgmentsThe authors thank the authority of BSMRAU Agricultural University, Gazipur, Bangladesh, http://www.selleckchem.com/products/dorsomorphin-2hcl.html for providing the space for crop cultivation. This research was partly supported by the Universiti Putra Malaysia (UPM), Malaysia.
In recent years, the topic of chaos synchronization has attracted increasing attention in many fields. The result of synchronization of chaotic oscillators is used in nonlinear oscillators [1], circuit experiment [2], secret communication [3], and some other fields. In 1990, the first concept of synchronization was presented by Carroll and Perora [4]. And there are many methods about chaos synchronization such as Lyapunov equation [5], Perora-Carroll (PC) [4] and backstepping control [6].

All of these methods are amid of the synchronization between one master and one slave system do not consist of the synchronization of multimaster systems and multislave systems.Dual synchronization is a special circumstance in synchronization of chaotic oscillators. The first idea of multiplexing chaos using synchronization was investigated in a small map and an electronic circuit model by Tsimring and Sushchik in 1996 in [7]; then the concept of dual synchronization was raised by Liu and Davids in 2000 in [8], which concentrates on using a scalar signal to simultaneously synchronize two different pairs chaotic oscillators, that is, the synchronization between two master systems and two slave systems.Nowadays, there are many dual synchronization methods, such as in 2000 Liu and Davids introduce the dual synchronization of 1-D discrete chaotic systems via specific classes of piecewise-linear maps with conditional linear coupling in [8].

The dual synchronization between the Lorenz and Rossler systems by the Lyapunov stabilization theory is investigated in [9]. The output feedback strategy is used to study the dual synchronization of two different 3-D continuous chaotic systems in [10]. Then the dual synchronization in modulated time-delayed systems is investigated by designing a delay feedback controller in [11]. All of these works are amid of the dual synchronization of integer-order chaotic systems and do not consist of the dual synchronization of fractional-order chaotic systems. In this paper, a new method of dual synchronization of fractional-order chaotic systems is proposed, by a linear controller; the dual synchronization of chaos is obtained. The rest of this paper is organized as follows: in Section 2, we construct a theory frame about the dual synchronization of two different fractional-order Brefeldin_A chaotic systems. By a linear controller, we obtain dual synchronization between two different fractional-order chaotic systems in Section 3.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>